- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Jin Yan, N. Cazimir (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
& Babbitt, W. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We recently demonstrated that the heterogeneous hydroxyl radical (OH) oxidation is an important aging process for isoprene epoxydiol-derived secondary organic aerosol (IEPOX-SOA) that alters its chemical composition, and thus, aerosol physicochemical properties. Notably, dimeric species in IEPOX-SOA were found to heterogeneously react with OH at a much faster rate than monomers, suggesting that the initial oligomeric content of freshly-generated IEPOX-SOA particles may affect its subsequent atmospheric oxidation. Aerosol acidity could in principle influence this aging process by enhancing the formation of sulfated and non-sulfated oligomers in freshly-generated IEPOX-SOA. Many multifunctional organosulfate (OS) products derived from heterogeneous OH oxidation of sulfur-containing IEPOX-SOA have been observed in cloud water residues and ice nucleating particles and could affect the ability of aged IEPOX-SOA particles to act as cloud condensation nuclei. Hence, this study systematically investigated the effect of aerosol acidity on the kinetics and products resulting from heterogeneous OH oxidation of IEPOX-SOA particles. We reacted gas-phase IEPOX with inorganic sulfate particles of varying pH (0.5 to 2.5) in an indoor smog chamber operated under dark, steady-state conditions to form freshly-generated IEPOX-SOA particles. These particles were aged at a relative humidity of 65% in an oxidation flow reactor (OFR) for 0-21 days of equivalent atmospheric OH exposure. Through molecular-level chemical analyses by hydrophilic interaction liquid chromatography method interfaced to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS), we observed that highly acidic aerosol has higher oligomer ratio and exhibit much slower mass decay with OH oxidation (pH=0.5, lifetime = 56 days) as compared to less acidic aerosols (pH=2.5, lifetime=17 days). Based on atomic force microscopy (AFM) analysis, aerosol acidity could also affect the morphology and viscosity of IEPOX-SOA during OH oxidation process.more » « less
An official website of the United States government

Full Text Available