skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jin Yan, N. Cazimir"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We recently demonstrated that the heterogeneous hydroxyl radical (OH) oxidation is an important aging process for isoprene epoxydiol-derived secondary organic aerosol (IEPOX-SOA) that alters its chemical composition, and thus, aerosol physicochemical properties. Notably, dimeric species in IEPOX-SOA were found to heterogeneously react with OH at a much faster rate than monomers, suggesting that the initial oligomeric content of freshly-generated IEPOX-SOA particles may affect its subsequent atmospheric oxidation. Aerosol acidity could in principle influence this aging process by enhancing the formation of sulfated and non-sulfated oligomers in freshly-generated IEPOX-SOA. Many multifunctional organosulfate (OS) products derived from heterogeneous OH oxidation of sulfur-containing IEPOX-SOA have been observed in cloud water residues and ice nucleating particles and could affect the ability of aged IEPOX-SOA particles to act as cloud condensation nuclei. Hence, this study systematically investigated the effect of aerosol acidity on the kinetics and products resulting from heterogeneous OH oxidation of IEPOX-SOA particles. We reacted gas-phase IEPOX with inorganic sulfate particles of varying pH (0.5 to 2.5) in an indoor smog chamber operated under dark, steady-state conditions to form freshly-generated IEPOX-SOA particles. These particles were aged at a relative humidity of 65% in an oxidation flow reactor (OFR) for 0-21 days of equivalent atmospheric OH exposure. Through molecular-level chemical analyses by hydrophilic interaction liquid chromatography method interfaced to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS), we observed that highly acidic aerosol has higher oligomer ratio and exhibit much slower mass decay with OH oxidation (pH=0.5, lifetime = 56 days) as compared to less acidic aerosols (pH=2.5, lifetime=17 days). Based on atomic force microscopy (AFM) analysis, aerosol acidity could also affect the morphology and viscosity of IEPOX-SOA during OH oxidation process. 
    more » « less